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Introduction & Motivation
In the context of Homotopy Type Theory/Univalent Foundations:

We would like to formalize
& use (∞, 1)-category theory!

Coherence problem:
How to even define (∞, 1)-categories?

Analytic (∞, 1)-category theory
is kinda hard.

Just solve it
already!

Let’s study (∞, 1)-categories
synthetically!

Extend type theory:
2-level, displayed, . . . ?

The collection of (∞, 1)-categories
is not a model of type theory

Develop directed
homotopy type theory

Settle for (−1)-analytic synthetic theory



Simplicial type theory

In simplicial type theory [RS17] we interpret HoTT in
simplicial spaces (or simplicial objects of any higher
topos). These are probed by the simplices ∆n.

From an interval type I (a totally ordered set with distinct
0 and 1), we get the type of arrows XI for any type X.

Definition X is Segal if X∆2 → XΛ2
1 is an equivalence.

Definition A Segal type X is Rezk if XE → X is an
equivalence, for E the “walking equivalence”.

The Rezk types are our (∞, 1)-categories. It’s possible to
do quite a lot of abstract category theory with these, incl.
fibered category theory [BW23].

Proof assistant Rzk [Kud23], formalization of a version of
the Yoneda lemma [KRW04].

Λ2
1 ↪→ ∆2

E



Modal simplicial type theory

But there aren’t many examples of categories in bare simplicial type theory.
In particular, we’d like the category of spaces S.

We define this using the [LOPS18] construction, but we need to be in a
setting where I is tiny, which it isn’t in simplicial spaces, but it is in cubical
spaces.

With MTT [GKNB21; GKNB20], we add modalities

• idempotent comonad g (global) with right adjoint s,

• involutive o (opposite),

• codistributive colattice & commutative monoid ρ (for I → ),

• right adjoint ρ ⊣ ρ̄,

• τ (twisted arrows) with 2-cells τ → id, τ → o,

• equations sg = s, gs = gρ̄ = go = g, τo = oτ , . . .

Enforce Γ.{ρ} = Γ.I so I becomes a distributive lattice with duality
involution ¬ : Iop → I.

I is tiny if I →
has a right adjoint.

See also
Riley’s [Ril24]

(Cf. also [WL20])



Triangulated type theory

Cubical spaces contain simplicial spaces as a subtopos [SW21],
which we can define as the lex modality , nullification at the family
of propositions:

Φ : I× I → Prop, Φ(i, j) = (i ≤ j) ∨ (j ≤ i)

The -modal types are the simplicial spaces. We add some axioms
to capture that cubes detect equivalences [MR23].

Further, we use synthetic quasicoherence [Ble23], which relies on
the fact that I, qua cubical space, is simplicial, see also [Spi16].

The interval I is a distributive lattice with 0, 1. Define an I-algebra
to be a distributive lattice R with 0, 1 and a structure-preserving
map I → R.

Axiom (Duality) For any finitely presented I-algebra R, the map
R → (homI(R, I) → I) is an equivalence.
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Cor. (Phoa’s principle) We
have equivalences

∆2 ≃ I[X] ≃ (I → I).



(Amazingly) Covariant Families

Consider the notion of covariant families over the interval:

Cov : U I → U
Cov X =

∏
x0:X0 isContr

(∑
x1:X1 homid(x0, x1)

)
Definition: A family A : X → U is amazingly covariant if
we have (∏

x:(i:I)→Xη·i Cov(λi. (A
η · i)(x i))

)
I

Theorem UCov := U ×UI U•
I =

∑
A:U Cov(λi.Aη · i)I

classifies amazingly covariant families.

Definition S :=
∑

A:U Cov(λi.Aη · i)I.
Closure properties S:

• contains global discrete types,

• is closed under Σ and identity types,

• is closed under finite limits and colimits.
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Directed Univalent Universe of Covariant Families

To prove directed univalence we introduce directed glue
types, given a type X and a family A : X → S:
GlA : X × I → U
GlAx i = (i = 0) → Ax

Theorem GlA :g X × I → S.
This uses Phoa’s principle.

Given E0, E1 : S with f : E0 → E1 we get a type family∑
e1:E1

Gl f−1(e1) : I → S

This gives us straightening.

Theorem (Directed univalence)
S : (E0 → E1) → homS(E0, E1) is an equivalence.

A

Corollary S is Segal and Rezk, hence
a category.

Theorem (external) S is simplicial.



Directed structure identity principle

As a consequence of directed univalence we can construct many other categories with the
expected morphisms:

(∞, 1)-category of pointed spaces,
∑

X:S X,

1-category of finite sets,

1-categories of usual algebraic structures,

1-category of posets, ω, ∆,

(∞, 1)-category of spectra (two definitions),

(∞, 1)-category of spaces with an endomorphism,

. . .



Conclusions and Further Work

Next steps:

• Naive Yoneda via twisted arrow modality.

• (∞, 1)-category of (∞, 1)-categories, functors
and natural equivalences.

• Applications to higher algebra.

• Integration in Rzk.

• Computational meaning [WABN22].

Thank you
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