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Introduction & Motivation
In the context of Homotopy Type Theory/Univalent Foundations:

We would like to formalize
& use (00, 1)-category theory!

Just solve it
already!

\

Coherence problem: Analytic (0o, 1)-category theory
How to even define (oo, 1)-categories? is kinda hard.
/ /

Extend type theory:

Let’s study (oo, 1)-categories
2-level, displayed, ...7

synthetically!

The collection of (oo, 1)-categories
is not a model of type theory

/

Settle for (—1)-analytic synthetic theory

Develop directed
homotopy type theory




Simplicial type theory

In simplicial type theory [RS17] we interpret HoTT in
simplicial spaces (or simplicial objects of any higher
topos). These are probed by the simplices A™.

From an interval type I (a totally ordered set with distinct
0 and 1), we get the type of arrows X! for any type X.

Definition X is Segal if X2 5 XM s an equivalence.

Definition A Segal type X is Rezk if X® — X is an

'

equivalence, for E the “walking equivalence”.

The Rezk types are our (oo, 1)-categories. It's possible to

do quite a lot of abstract category theory with these, incl.

fibered category theory [BW23].

Proof assistant RzK [Kud23], formalization of a version of
the Yoneda lemma [KRWO04].




Modal simplicial type theory

But there aren’t many examples of categories in bare simplicial type theory.
In particular, we'd like the category of spaces S.

We define this using the [LOPS18] construction, but we need to be in a
setting where T is tiny, which it isn't in simplicial spaces, but it is in cubical
spaces.
With MTT [GKNB21; GKNB20], we add modalities

e idempotent comonad g (global) with right adjoint s,

e involutive o (opposite),

e codistributive colattice & commutative monoid p (for I — _),

right adjoint p - p,

T (twisted arrows) with 2-cells 7 — id, 7 — o,
e equations sg =s, gs = gp=go =g, TO =0T, ...

Enforce I".{p} = T".I so I becomes a distributive lattice with duality
involution — : I°P — I.

Lis tiny if I — _
has a right adjoint.

See also
Riley's [Ril24]

(Cf. also [WL20])



Triangulated type theory

Cubical spaces contain simplicial spaces as a subtopos [SW21],
which we can define as the lex modality @, nullification at the family
of propositions:

®:Ix1—Prop,  ®(i,j) = (i <j)V(j<i)

The m-modal types are the simplicial spaces. We add some axioms
to capture that cubes detect equivalences [MR23].

Further, we use synthetic quasicoherence [Ble23], which relies on
the fact that I, qua cubical space, is simplicial, see also [Spil6].

The interval I is a distributive lattice with 0,1. Define an I-algebra
to be a distributive lattice R with 0,1 and a structure-preserving
map I — R.

Cor. (Phoa's principle) We

Axiom (Duality) For any finitely presented I-algebra R, the map have equivalences

R — (homy(R,T) — 1) is an equivalence.
A? ~T[X] ~ (I —1).



(Amazingly) Covariant Families

Consider the notion of covariant families over the interval:

Cov:U'— U
Cov X = HmO:XO isContr(X:m:X1 hom;q (xg, 331))

Definition: A family A : X — U is amazingly covariant if
we have

(L qay s Cov i (A7 - ) 1)),

Theorem Ucoy :=U Xy UP =D 44, Cov(Ni. AT - i)
classifies amazingly covariant families.

Definition S := 3" ,,, Cov(Xi. A7 ).
Closure properties S:

e contains global discrete types,

e is closed under ¥ and identity types,

e is closed under finite limits and colimits.



Directed Univalent Universe of Covariant Families

To prove directed univalence we introduce directed glue
types, given a type X and a family A: X — S:

GIA: X X1 — Uy
GlAzi=(i=0)— Az
Theorem Gl A :; X xI — S.
This uses Phoa's principle.

Given Ey, Eq : S with f : Eg — E; we get a type family

Zel:El Glf~Ye):I—S
This gives us straightening. Corollary S is Segal and Rezk, hence

Theorem (Directed univalence) a category.

S (Ey — E1) — homs(Ey, Ey) is an equivalence. Theorem (external) S is simplicial.



Directed structure identity principle

As a consequence of directed univalence we can construct many other categories with the
expected morphisms:

(00, 1)-category of pointed spaces, >_ .o X,
1-category of finite sets,

1-categories of usual algebraic structures,
1-category of posets, w, A,

(00, 1)-category of spectra (two definitions),

(00, 1)-category of spaces with an endomorphism,



Conclusions and Further Work

Next steps:
e Naive Yoneda via twisted arrow modality.
e (00, 1)-category of (00, 1)-categories, functors
and natural equivalences.

Applications to higher algebra.

Integration in RzK.
e Computational meaning [WABNZ22].

Thank you
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